

Unleashing Segment Routing TE with SR Flexible Algorithms

Jose Liste, Technical Marketing Engineer (jliste@cisco.com) iNOG12 - February 2019

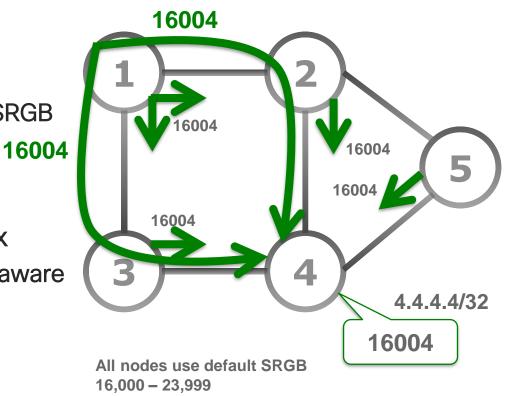
Why are we here?

- Have you ever wished you could tailor IGP computation to fit your own traffic engineering needs? Such as by computing:
 - Paths considering a subset of the routers in your network
 - Paths that minimize cumulative delay to a destination based on measured per-link delay
 - Paths traversing only encrypted MACsec links
 - Paths traversing only high speed interfaces

Why are we here?

- All these use cases are now possible !!!
- And furthermore, they are possible at scale and without adding any extra state into the network

- Meet SR IGP Flexible Algorithms !!!
 - A new member of SRTE family


Agenda

- Overview
- Operation
- Use Cases

SR Flexible Algorithm Overview

Recap - IGP Prefix Segment

- IGP Prefix-SID
 - Advertised as label value
 - Operator-allocated value from SRGB
 - Advertised as index
- Distributed by ISIS/OSPF
- Shortest-path to the IGP prefix
 - Equal-Cost Multi-Path (ECMP)-aware
- Global Segment
 - Programmed in every node

SR IGP Flexible Algorithm

Complements the SRTE solution with customizable Prefix-SIDs

- Leverages the SRTE benefits of simplicity and automation
 - Automated sub-50msec FRR (TILFA)
 - On-Demand Policy (ODN)
 - Automated Steering (AS)

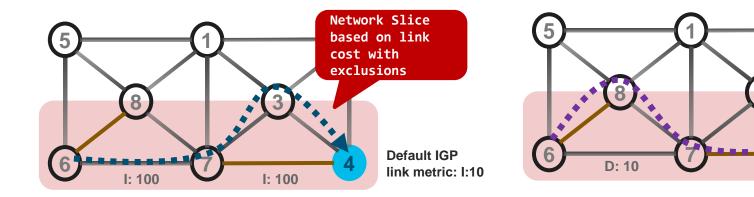
SR IGP Flexible Algorithm

Complements the SRTE solution with <u>customizable Prefix-SIDs</u>

- We call "Flex-Algo"
 - The algorithm is defined by the operator, on a per-deployment basis
- Flex-Algo K is defined as
 - The minimization of a specified metric: IGP, delay, ...
 - The exclusion of certain link properties: link-affinity, SRLG, ...

SR IGP Flexible Algorithms

- Examples
 - Operator defines Flex-Algo 128 as "minimize IGP metric while avoiding links with link-affinity "brown"


Network Slice

based on delay

Measured link

Delay: D:1

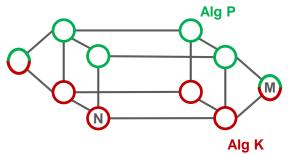
- Operator defines Flex-Algo 129 as "minimize delay metric"

SR IGP Flexible Algorithms

- Examples
 - Operator defines Flex-Algo 128 as "minimize IGP metric while avoiding links with link-affinity "brown"
 - Operator defines Flex-Algo 129 as "minimize delay metric"

SR Flexible Algorithm Operation

Flex-Algo Operation


Flex-Algo Membership

- Alg P Alg K
- Each node MUST advertise Flex-Algo(s) that it is participating in
- A Flex-Algo instance can be enabled on all or a subset of nodes
- Each node can participate in multiple Flex-Algo(s)
- Example:
 - Node N is enabled to participate in Flex-Algo instance K
 - Node M is enabled to participate in Flex-Algo instances K and P

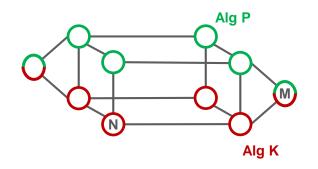
Flex-Algo Operation

- 2 Flex-Algo Prefix SIDs
 - If a node advertises participation in a Flex-Algo likely it also advertises a prefix SID for that Flex-Algo
 - Example:
 - Node N advertises
 - Prefix SID 1600N for ALGO 0
 - Prefix SID 1700N for ALGO K

- Node M advertises
 - Prefix SID 1600M for ALGO 0
 - Prefix SID 1700M for ALGO K
 - Prefix SID 1800M for ALGO P

Flex-Algo Participation and Prefix-SID

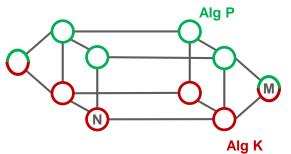
• Each Prefix SID is related to an algorithm


• Each node advertises its ALGO capability

The SR-Algorithm sub-TLV has following format:

0	1	2	3
012345	6789012345	678901234	5678901
+-+-+-+-+-+-+-+-+-+-++-++-++-++-++-++-+			
Type	Length	1	
+-+-+-+-+-+-	+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-++++-	+-+-+-+-+-+-+
Algorithm :	l Algorithm 2	Algorithm	Algorithm n
+-+-+-+-+-+	+-	+-	+-+-+-+-+-+-+-+

Flex-Algo Operation

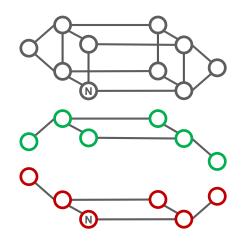

- 2 Flex-Algo Prefix SIDs (cont.)
 - No additional loopback address

- Flex-Algo Prefix SID's can be advertised as additional prefix-SID's of the existing loopback address
- Example:
- Node M advertises loopback0 1.1.1.M/32 with
 - Prefix SID 1600M for ALGO 0
 - Prefix SID 1700M for ALGO K
 - Prefix SID 1800M for ALGO P

Flex-Algo Operation

3 • Flex-Algo Definition

- Each node MUST have a consistent definition of the Flex-Algo(s) that it is participating in
- Local configuration
 - likely automated during day-0 provisioning
- · Learned from a central entity via IGP flooding
 - new top TLV defined for Flex-Algo definition advertisement
- Example:
 - Flex-Algo instance K == minimize delay metric

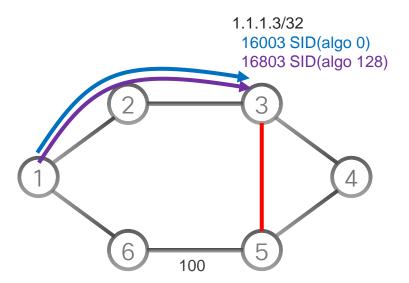

Flex-Algo Operation (cont.)

↓ Flex-Algo Computation

- N prunes any node not a member of K
- N prunes any link that is exclude by K
- Resulting topology is called Topo(K)
- N compute shortest-path tree on Topo(K) with metric defined by K

5 • Flex-Algo Prefix SID FIB installation

 N installs any reachable Prefix-SID of K in the forwarding table along the computed shortest-path on Topo(K)

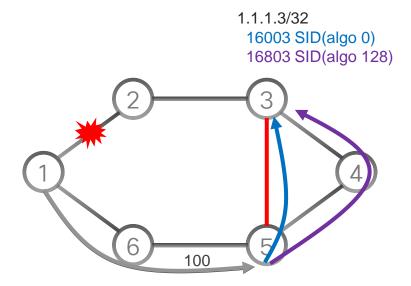


Topology Independent LFA (TI-LFA)

- TI-LFA algorithm is performed within Topo(K)
- Backup path is expressed with Prefix-SIDs of Algo K

Benefits: the backup path is optimized per Flex-Algo !!!

Example – Primary paths per Algo


Each node in this topology supports SR alg0, alg128 Default IGP link metric: I:10 At node 1 for destination 3

16003 => 16003 via 2

16803 => 16803 via 2

All nodes participate in Flex-Algo 128 which is defined as min IGP metric and avoid red affinity

Example – TI-LFA Backup path per Algo

At node 1 for destination 3

16003 => 16003 via 2

→ backup: <24065, 16003> via 6

16803 => 16803 via 2

→ backup: <24065, 16803> via 6

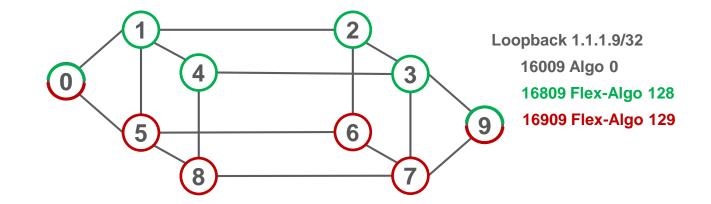
The usage of Algo-128 Prefix-SID 16803 ensures that the Algo 128 backup path also avoids the red link

Reminder: 240XY is the Adj SID from node X to node Y

OSPF and SRv6

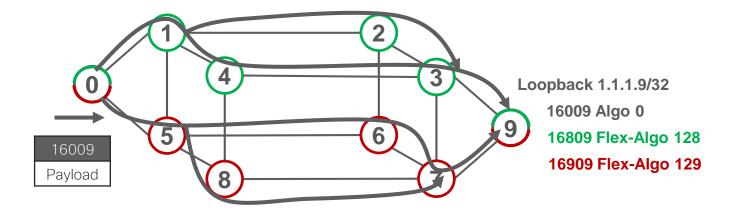
- Same applies to OSPF
- Same applies to SRv6

IETF

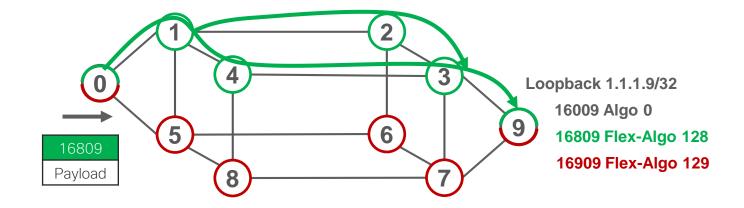

- <u>draft-ietf-spring-segment-routing</u>
 - Prefix-SID per Algorithm
- <u>draft-ietf-spring-segment-routing-policy</u>
 - SR Policy architecture, ODN, AS
- <u>draft-ietf-lsr-flex-algo</u>
 - Customization of Algo and consistency
- <u>draft-ketant-idr-bgp-ls-flex-algo</u>
 - Flex-Algo definition advertisement with BGP Link-State
- <u>draft-ietf-isis-te-app</u>
 - Used to flood Flex-Algo specific link affinities
- <u>RFC7810</u> (IS-IS Traffic Engineering (TE) Metric Extensions)
 - Used to advertise extended TE metrics e.g. link delay

IETF

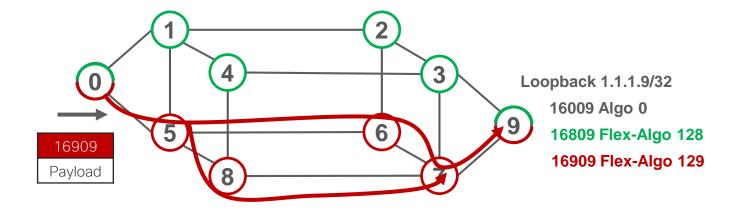
- <u>draft-ietf-spring-segment-routing</u>
 - Prefix-SID per Algorithm
- <u>draft-ietf-spring-segment-routing-policy</u>
 - SR Policy architecture, ODN, AS
- draft-ietf-lsr-flex-algo
 - Customization of Algo and consistency
- <u>draft-ketant-idr-bgp-ls-flex-algo</u>
 - Flex-Algo definition advertisement with BGP Link-State
- draft-ietf-isis-te-app
 - Used to flood Flex-Algo specific link affinities
- <u>RFC7810</u> (IS-IS Traffic Engineering (TE) Metric Extensions)
 - Used to advertise extended TE metrics e.g. link delay


SR Flexible Algorithm Use-Cases

Use-Case - Multi-Plane Networks


- All the nodes support Algo 0: minimize IGP metric
- Green nodes also support 128: minimize IGP metric
- Red nodes also support 129: minimize Delay

Use-Case - Multi-Plane Networks (cont.)

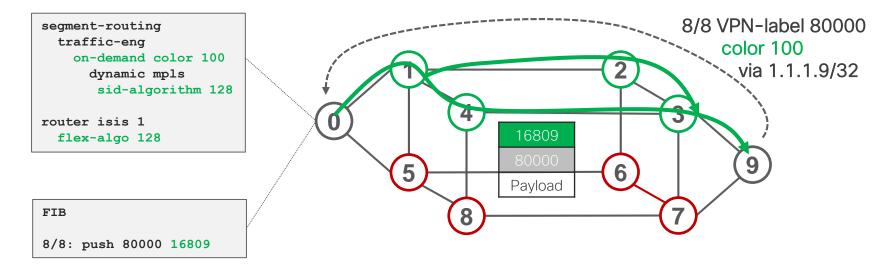

Path to Node 9 across Algo 0

Use-Case - Multi-Plane Networks (cont.)

Path to Node 9 across Flex-Algo 128

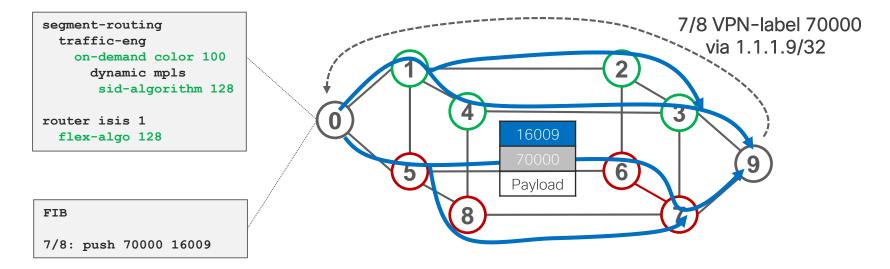
Use-Case - Multi-Plane Networks (cont.)

Path to Node 9 across Flex-Algo 129


Automated Steering

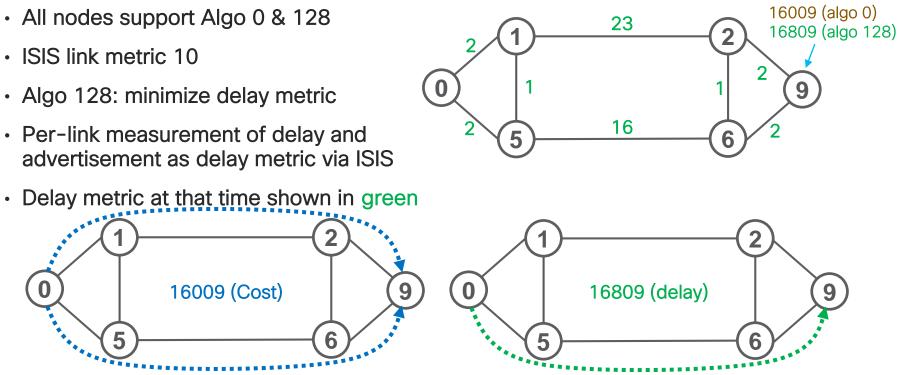
SRTE Automated Steering (AS) is leveraged for IGP Flex-Algo

```
segment-routing
traffic-eng
on-demand color 100
dynamic mpls
sid-algorithm 128
```

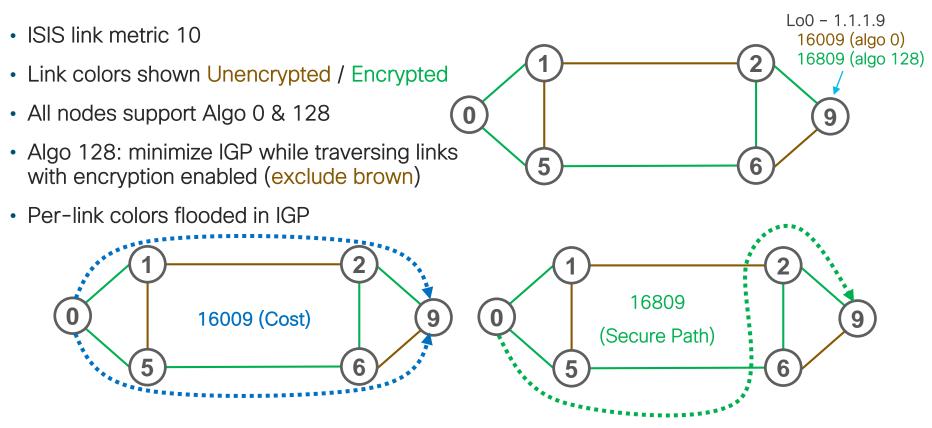

"Any 100-colored BGP route should be steered via the prefix-SID(ALGO 128) of the BGP nhop"

Automated Steering – Multi-Plane

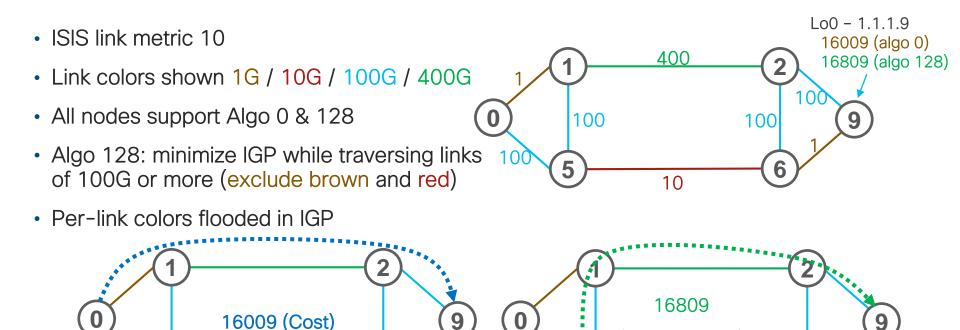
- Node 0 automatically steers any BGP route with color 100 from 9 via 16809 hence via the green plane only
- One single Flex-Algo Prefix-SID expresses the end-to-end SLA path


Automated Steering – Multi-Plane

 Node 0 automatically steers any BGP route without color from 9 via 16009 (any plane)


Use-Case – Delay vs Cost of Transport

- All nodes support Algo 0 & 128
- ISIS link metric 10
- Algo 128: minimize delay metric
- Per-link measurement of delay and advertisement as delay metric via ISIS



Lo0 - 1.1.1.9

Use-Case - SRTE for Intelligent Secure Paths

Use-Case - SRTE for High-BW Links Preference

(High BW only)

Demonstration

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

If we had more time ...

Inter-Domain path computation with Flex-Algo

Conclusions

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

SR IGP Flexible Algorithm

- Complements the SRTE solution by adding new Prefix-Segments
 with specific optimization objective and constraints
 - minimize igp-metric or delay or te-metric
 - avoid link-affinity or SRLG
- TE path from anywhere to anywhere automatically computed by IGP
- Single SID is used to enforce traffic on the Flex-Algo specific path
- Leverages the SRTE benefits of simplicity and automation
 - Automated sub-50msec FRR (LFA / TI-LFA)
 - On-Demand Policy (ODN)
 - Automated Steering (AS)

Resources / Stay Up-To-Date

Thank You