
digitalocean.com

Automating Networks Using Salt, Without
Running Proxy Minions

Mircea Ulinic

iNOG14v, April 2020
Home

Brief Introduction to Salt

Salt is an event-driven and data-driven configuration management and
orchestration tool.

“In SaltStack, speed isn’t a byproduct, it is a design goal. SaltStack was created
as an extremely fast, lightweight communication bus to provide the foundation
for a remote execution engine. SaltStack now provides orchestration,
configuration management, event reactors, cloud provisioning, and more, all
built around the SaltStack high-speed communication bus.”

https://docs.saltstack.com/en/getstarted/speed.html 2

https://docs.saltstack.com/en/getstarted/speed.html

Brief Introduction to Salt: Typical Architecture

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Minion Minion Minion...

3

https://docs.saltstack.com/en/latest/topics/topology/index.html

Brief Introduction to Salt: Multi-Master Architecture

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Minion Minion Minion...

4

MasterMaster ...

https://docs.saltstack.com/en/latest/topics/topology/index.html

Brief Introduction to Salt: Network Automation Topology
(when using a single Master)

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Proxy
Minion

Proxy
Minion

Proxy
Minion

...

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

5

https://docs.saltstack.com/en/latest/topics/topology/index.html

Typical Network Automation Topology using Proxies (1)

6

Proxy Minions are simple processes able to run anywhere, as long as:

1) Can connect to the Master.
2) Can connect to the network device (via the channel / API of choice - e.g.,

SSH / NETCONF / HTTP / gRPC, etc.)

Typical Network Automation Topology using Proxies (2)

7

Deployment examples include:

● Running as system services
○ On a single server
○ Distributed on various servers

● (Docker) containers
○ E.g., managed by Kubernetes

● Services running in a cloud
○ See, for example, salt-cloud

https://docs.saltstack.com/en/latest/topics/cloud/index.html

Typical Network Automation Topology using Proxies (3)

8

Proxy Minions imply a process always running in the background. That means,
whenever you execute a command, Salt is instantly available to run the
command. But also means:

- A process always keeping memory busy.
- System services management (one per network device).
- Monitoring, etc.

Not always beneficial, sometimes you just need a one-off command every X
weeks / months.

Introducing salt-sproxy (Salt Super Proxy)

9

https://salt-sproxy.readthedocs.io/

Salt plugin to automate the management and configuration of network devices
at scale, without running (Proxy) Minions.

Using salt-sproxy, you can continue to benefit from the scalability, flexibility and
extensibility of Salt, while you don't have to manage thousands of (Proxy) Minion
services. However, you are able to use both salt-sproxy and your (Proxy) Minions
at the same time.

https://salt-sproxy.readthedocs.io/

Remember slide #7?

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Proxy
Minion

Proxy
Minion

Proxy
Minion

...

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

10

https://docs.saltstack.com/en/latest/topics/topology/index.html

Topology using salt-sproxy

salt-sproxy

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

11https://salt-sproxy.readthedocs.io/

https://salt-sproxy.readthedocs.io/

Topology using salt-sproxy

salt-sproxy

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

12

This can be any server,
or your own computer.

https://salt-sproxy.readthedocs.io/

https://salt-sproxy.readthedocs.io/

Getting started with salt-sproxy: Installation

13https://salt-sproxy.readthedocs.io/

$ pip install salt-sproxy

See a recorded demo at:
https://asciinema.org/a/247697?autoplay=1

https://salt-sproxy.readthedocs.io/
https://asciinema.org/a/247697?autoplay=1

Build the database of devices you want to manage. For example, as a file:

Getting started with salt-sproxy: Setup example (1)

14https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

router1:
 driver: junos
router2:
 driver: iosxr
spine1:
 driver: junos
leaf1:
 driver: eos
fw1:
 driver: panos
 host: fw1.firewall.as1234.net

/etc/salt/roster

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

And, finally, let salt-sproxy know that the data is loaded from the Roster file:

Getting started with salt-sproxy: Setup example (2)

15

roster: file

proxy:
 proxytype: napalm
 username: <username>
 password: <password>

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

And, finally, let salt-sproxy know that the data is loaded from the Roster file:

Getting started with salt-sproxy: Setup example (2)

16

roster: file

proxy:
 proxytype: napalm
 username: <username>
 password: <password>

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

There are different flavours of Roster
sources, including NetBox, Pillar (i.e.,

retrieve data from HTTP APIs, MySQL /
PostgreSQL databases, etc.).

File is the easiest to understand and
demo.

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

And, finally, let salt-sproxy know that the data is loaded from the Roster file:

Getting started with salt-sproxy: Setup example (2)

17

roster: file

proxy:
 proxytype: napalm
 username: <username>
 password: <password>

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

You can choose between a variety of
Proxy Modules natively available in Salt.

If none available for your use case,
developing a new Proxy Module in your

own environment is easy and
straighforward.

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html
https://docs.saltstack.com/en/master/ref/proxy/all/index.html
https://docs.saltstack.com/en/latest/topics/proxyminion/index.html#proxymodules
https://docs.saltstack.com/en/latest/topics/proxyminion/index.html#proxymodules

After these three easy steps, you can start running commands:

Getting started with salt-sproxy: Usage

18https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

$ salt-sproxy ‘router*’ --preview-target
- router1
- router2

$ salt-sproxy ‘router*’ net.arp
… snip …

$ salt-sproxy ‘router*’ net.load_config \
 text=’set system ntp server 10.0.0.1’ test=True
… snip ...

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

After these three easy steps, you can start running commands:

Getting started with salt-sproxy: Usage

19https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

$ salt-sproxy ‘router1’ net.load_config \
 text=’set system ntp server 10.0.0.1’ test=True
router1:

already_configured:

 False
comment:

 Configuration discarded.
diff:

 [edit system]
 + ntp {
 + server 10.0.0.1;
 + }

loaded_config:
result:

 True

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

In the previous examples, we used SLS data from a specific file (i.e., information
that we maintain ourselves) as SLS files , to build the list of devices.

But there can be plenty of other sources where to load this data from, see
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html, examples include:

- HTTP API
- Postgres / MySQL database
- Etcd, Consul, Redis, Mongo, etc.
- CSV file :-(

Getting started with salt-sproxy: Alternative setup

20https://salt-sproxy.readthedocs.io/en/latest/roster.html

https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://salt-sproxy.readthedocs.io/en/latest/roster.html

Update /etc/salt/master to let salt-sproxy know that you want to load the list of
devices from NetBox:

Getting started with salt-sproxy: Alternative setup - NetBox

21https://salt-sproxy.readthedocs.io/en/latest/examples/netbox.html

roster: netbox

netbox:
 url: https://netbox.live/
 token: <token>

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/examples/netbox.html
https://netbox.live/

Salt has a natively available a REST API, which can be used in combination with
salt-sproxy to invoke commands over HTTP, without running Proxy Minions.

Enable the API:

Using salt-sproxy via the Salt REST API

22https://salt-sproxy.readthedocs.io/en/latest/salt_api.html

rest_cherrypy:
 port: 8080
 ssl_crt: /path/to/crt
 ssl_key: /path/to/key

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/salt_api.html

After these three easy steps, you can start running commands:

23https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
 -d eauth='pam' \
 -d username='mircea' \
 -d password='pass' \
 -d client='runner' \
 -d fun='proxy.execute' \
 -d tgt=router1 \
 -d function='test.ping' \
 -d sync=True
return:
 router1: true

Using salt-sproxy via the Salt REST API

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

Why salt-sproxy

24https://github.com/mirceaulinic/salt-sproxy

- salt-sproxy is much easier to install (compared to the typical Salt setup).
- Say goodbye to the burden of managing hundreds of system services for

the Proxy Minion processes.
- You can run it locally, on your own computer.
- Integrates easily with your existing Salt environment (if you have), by

installing the package on your Salt Master.
- Can continue to leverage the event-driven automation and orchestration

methodologies.
- REST API, see also Using the Salt REST API documentation.
- Python programming made a breeze - might go well with the ISalt package.

https://github.com/mirceaulinic/salt-sproxy
https://salt-sproxy.readthedocs.io/en/latest/salt_api.html#salt-api
https://isalt.dev/

Questions?

Live Demo

26

Live Demo setup

27

DigitalOcean
Droplet

salt-sproxy

Juniper VM Arista VM Juniper VM Arista VM. . .

Tesuto topology

28

leaf1 leaf2 leaf3 leaf10. . .

spine1 spine2 spine3 spine10

router1 router2

. . .

Tesuto topology

29

- 2 routers (Junos VM)
- 10 leafs (Arista VM)
- 10 spines (Junos VM)

Salt-sproxy configuration

30

Configuration files, installation script, and demo CLI available at
https://github.com/mirceaulinic/iNOG14v-demo

https://github.com/mirceaulinic/iNOG14v-demo

Salt-sproxy configuration essentials

31

Master config Roster config

roster: file

proxy:
 proxytype: napalm
 username: tesutonet
 password: <password>

router1:
 driver: junos
 host: juniper.iNOG14v...
router2:
 driver: junos
 driver: junos0.iNOG14v..

{%- for i in range(1, 11) %}
leaf{{ i }}:
 driver: eos
 host: eos{{ i }}.iNOG14v..
spine{{ i }}:
 driver: junos
 host: junos{{ i }}.iNOG14v
{%- endfor %}

Running salt-sproxy

32

$ salt-sproxy * --preview-target
- leaf2
- leaf10
- leaf5
- spine9
- leaf4
- spine1
- spine6
- spine4
- spine5
- leaf1
- spine3
- leaf9
- spine8
- leaf6

… [snip] ...

Running salt-sproxy

33

More examples in the cli.sh script

https://github.com/mirceaulinic/iNOG14v-demo/blob/master/cli.sh

Thanks!

mu@do.co

