Network
Provisioning
and Integration
Testing

(USING ANSIBLE AND JENKINS)

QOur solution

Ansible:

Generates the configs using the template module

Gerrit:

Git server for code review and version control

Jenkins:

Runs the ansible playbooks(and a lot more)

ZTP/POAP:
Configs are served up to switches automatically over HTTP/TFTP

* Images are also served to switches

Why automate
provisioninge

» Humans are slow

Computers can speed up config generation
» Humans make mistakes

Computers can eliminate configuration errors
» Humans are fickle

Everybody has there own standard (which changes on a
daily basis)

Result:
» Simpler network
» Easier to tfroubleshoot
» Humans can focus on what they are good at

Ansible

Automation tool used for:
» Provisioning
» Config management

» Software deployment

Low learning curve:
> YAML

» Basic linux

Flexible:

» Python, loops, conditionals, etc

Our Use Case:

» Config generation

- name: generate role for new tr switch and update siteconfig file
connection: local
hosts: localhost

Vars prompt:

— name: "awitch"™
prompt: "switch name™

Vars:

- switch u: "{{ switch.uppexr() }}"

- =Bite: :{{ switch u.splitc('-") [0] }}"
vars files:
- ... fvars/{{ =ite }}.vaml

o . fwvars/bgp.yaml

tasks:
- name: create BGP config
template: src=bgp.]jZ2 dest=bgp.conf

- name: create tasks,templates and vars directories
file: path=../../roles/{{ switch u }}/{{ item }} state=directory
with items:
- tasks
- templates
- wVars

bgp as: 65084 router bgp 65084

bgp peers:

- ip: 1.1.1.1
as: 65084
description:

- ip: 2.2.2.2
as: 65084
description:

1
router bgp {{ bgp_as !}
{% for peer in bgp peers %}
neighbor {{ peer.ip }! remote-as {{ peer.as !}
{% if peer.description is defined %}
neighbor {{ peer.ip !! description {{ peer.description }}!
{% endif %}
{% endfor %}

neighbor
neighbor
neighbor
neighbor

1.1.1.

1.1.1.
2.2.2.
2.2.2.

1l remote-a= &5084
1 description ##*#*
Z remote-as &5084
2 description ##%¥

BGE Peer 1

BGE Peer 2

"

"

Our Implementation
(Matryoshka Dolls)

Si’re.yiml Global.yaml
<
% % } |
g |
[
a

Switch type.j2 Config

Next Steps

Programmatic Tools to configure network:

» Python scripts, web GUI's or ansible playbooks can
now easily be written to reconfigure network
devices via ‘switch.yaml’ variable files

» Yaml files are human and machine readable

Testing and Validation:

» Ansible playbooks can use the same ‘switch.yaml’
variables as input to validate the network is in
expected state

» Variables can change but playbooks stay the same

Jenkins & the Network

7
&

“\/ 4

‘l\é

What is Jenkinse

» Cron on Steroids.
» Automation server.
» Continuous integratfion server.

» |Its free

Installation &
Configuration

Quick Installation
Easy Configuration

» Hundreds of Plugins
Git, SVN , perforce , Jira, Ansible , Gerrit etc

Jenkins and Intfegration
festing

Integration testing verifies the different pieces of
configuration management system works well
together.

Problem: Someone’s checks in a bad commit that
breaks your config generation modules that you
need but you discover this many days later ®

Jenkins Can help

Create a Jenkins project in a simple 3 step process .

» Defines SCM (Git, SVN etc.)

» Specify Integration test as a build step
» Ansible playbook.
» Python or your favourite scripting language.

» Specify a Post Build action
» Run another Jenkins project
» Creating or Update Jira
» Email noftification

Other use-cases

» We use Jenkins for trending , visibility &
centralisation benefits rather than deploying cron
landmines across our environment.

» Automatically update DNS server once a new
network device is checked into our Git Repo

» Jenkins Enables Zero Touch Replacement
stfrategy in our environment.

What else are we working
on ¢

» Using Jenkins to build Continuous Deployment
Pipeline for network infrastructure.

» Continuous Compliance orchestration

