
System Reticulation 
Engineering

Laura Nolan, SRE, Google
Image: Alias 0591 via Flickr 



About Laura 

● Degree in CS from Trinity College, recent-ish MSc in software engineering from 
UCD

● Principal software engineer in R&D for an Irish software company (Curam, now 
part of IBM Smarter Cities)

● Then specialised in software performance, working for an e-commerce company 
for a year

● Now: 4 years as an SRE at Google
○ Three working on data infrastructure
○ Not quite a year working on the network (so far)
○ Wrote one of the chapters of the O'Reilly SRE book

● Co-chair of the USENIX SRECon EMEA 2017 conference



Hope is not a strategy. Engineering solutions to design, build, and 
run large-scale systems scalably, reliably, and efficiently is a 
strategy, and a good one.

Site Reliability Engineering



Misconceptions about SRE

● SRE is a fancy title for an operations team
● SRE is mostly about automation of common tasks
● SRE is a silver bullet for your operational issues

Image: John Spade 



The core functions of SRE

● Monitoring and metrics
● Emergency response
● Capacity planning
● Service turnup and turndown
● Change management
● Performance and efficiency



Software 
defined 
networking

Image: Emran Kassim 



Monitoring and Metrics

● SLOs
● Symptom based alerting
● Trust your alerting - don't watch graphs
● Alerts should be actionable
● Do long-term analysis of your metrics
● Use regular production meetings to track your metrics, short and long term



Emergency Response

● Incident management techniques
○ Teamwork and communication. No service is an island, especially the network
○ Being at the bottom of the infrastructure stack makes this vital

● Blame free postmortems
○ Root cause analysis
○ Engineering improvements based on postmortem action items

● Disaster planning and testing
● Wheel of misfortune
● Emergency playbooks
● Troubleshooting and debugging skills



Capacity Planning

● Understanding and modelling demands on your system
● Long term metrics gathered by monitoring tools to support capacity planning
● How does failure in one part of the system affect capacity demand elsewhere?
● Organic growth
● Launches



Service turnup and turndown

● Configuring new devices
● Turning up new links or peerings safely
● Decommissioning older infrastructure
● Software as well as physical infrastructure



Change Management

● Change management is both a huge source of human toil and very risky
● Outages are usually because something changed - risks have to be analysed

○ Software versions
○ Hardware
○ Configuration

● Safer change management involves testing, ideally automated, and canarying
● Large complex systems are constantly in flux

○ Breakage and repairs of physical infrastructure
○ Rollouts - software, configuration

● Most routine change management is best done by automation
● Doing this reliably and safely is one of the most challenging parts of SRE



Performance and efficiency

Design, development and engineering work to improve

● Isolation
● Scalability
● Throughout
● Latency
● Efficiency



Other elements of the SRE mindset

● Career expectations - advancement while working on production
● Time to spend engineering, not doing repetitive 'toil'
● Project focus, rather than ops focus
● Autonomy in prioritizing work
● Input into planned changes, and the authority to say no



Network failure 
domains

We try to abstract software services, and limit the interaction between parts to reduce 
complexity. This is harder with networks. 

Image: n h via Flickr



Why SRE for the network?



Questions?

Some resources:

● "Site Reliability Engineering: How Google Runs Production Systems", O'Reilly 
Books, 2016

○ Full content at https://landing.google.com/sre/book/

○ The 'Monitor Lizard Book'

● USENIX SRECon EMEA 2017 will take place in Dublin from August 30th to 
September 1st - call for participation now up on usenix.org


