
MONITORING MASSIVE
NETWORK METRICS
Vicente De Luca
Sr. Network Engineer at Zendesk
vdeluca@zendesk.com
h>ps://nethero.org

Problem we are trying to solve

Poll all load balancers metrics every 1min including:
 - Memory u8liza8on breakdown by linux processes
 - Backend pool sta8s8cs including breakdown per members

 Metric volume:
- 3k pool objects per load balancer
- each pool object contain mul9ple metrics (28)
- also nested member metrics (25 x N) N = amount of nodes
- total ~562k metrics per polling, per ac9ve load balancer

1st shot

Not reinvent the wheel by trying SNMP polling:

• Not all metrics available in factory MIBs (Ex. memory breakdown)

• Sta?c crea?ng custom MIBs don't scale (we tried)

• Hit a wall in CPU resources used by net-snmp (daemon crashes)

Feb 12 11:20:13 lb01 emerg logger: Re-starting snmpd
Feb 12 11:21:14 lb01 emerg logger: Re-starting snmpd

Vendor support provides no viable alterna1ve for this scenario

Discovering alterna/ves

We realized we could:
- Get all the stats by CLI show cmds without harming CPU
- Cook a parser for extracBng names,tags and values
- Use Datadog for our Bme series DB, dashboard panel and alerts
system

How our data looks like ?

ltm pool POOL-INOG {
 active-member-cnt 2
 connq-all.age-edm 0
 connq-all.age-ema 0
 connq-all.age-head 0
 connq-all.age-max 0
 connq-all.depth 0
 connq-all.serviced 0
 connq.age-edm 0
 connq.age-ema 0
 connq.age-head 0
 connq.age-max 0
 connq.depth 0
 connq.serviced 0
 cur-sessions 605
 members {
 server1.inog.net:80 {
 addr 10.0.0.2
 serverside.bits-in 1289371
 serverside.bits-out 31293
 serverside.cur-conns 302
 serverside.max-conns 1000
 serverside.pkts-in 31920
 serverside.pkts-out 31289
 serverside.tot-conns 800
 session-status enabled
 status.availability-state available
 status.enabled-state enabled
 status.status-reason Pool member is available
 tot-requests 132913
 }
 ...

Why Datadog ?

• Wide u(lized by dev/ops allowing easy correla(on graphs

• Increase audience on network metrics

• No infra concerns on scaling up the amount of pushed metrics

Do I need to pay for Datadog ?

No. Similar approach should work with statsd and compa5ble
backends suchs as InfluxDB

How (dog)statsd works?

• local agent (dogstatsd) listen to UDP messages

• expect metrics in the following format:

metric.name:value|type|@sample_rate|#tag1:value,tag2

And now, what ?

We cooked a script (python) to:
 - parse the load balancer CLI show output
 - extract metric name, tags and values
 - craA and send an UDP packet to dogstatsd for each metric

UDP payload example:

netops.lb.serverside.cur_conn:143321|g|#pod:1,#netdevice:lb01,#vip:inog,#port:80,#view:public

Challenges while wri-ng the parser (python) script

• balancing curly brackets its not an easy job

• lucky day: our load balancer output looks like JSON

• forced show output to be JSON by regex replace

• result is a python dic>onary where for loops can extract name,
tags and values

2nd shot

At pair of ac+ve/standby load balancers:
- bash script execute show cmd every 1 minute, compress the
result and send to a linux host via netcat

At linux host:
- nc receives the data, uncompress and call a python script
- python script parse the metrics, extract tags and values
- cra9 and submit UDP datagrams to local dogstatsd process

Results: Metric Loss: overloading dogstatsd

3rd shot (+Improvements)

At pair of ac+ve/standby load balancers:
 - bash script now cheks if unit is ac+ve before submit metrics via
netcat (reduced by half workload on dogstatsd)

At linux host:
 - Filter any non need metrics (all permanent zeroed values)
 - Splay: Python send the UDP packets in large blocks, sleeping a
few before submiEng next block

Results
How our data looks now ?

Current Connec*ons / Top Talkers (every 1 min)

Events overlay (Network Changes)

Members flap

Infrastructure correla.on

Results
Aler%ng

• Email

• Page on call

• all usual means

Triggered by:

• Configured Thresholds

• Outlier detec4on algorithms

Python script execu0on output

2016-05-12 12:56:58.231643 - lb01 - #31383 Metrics processed in 2.79145097733
2016-05-12 12:57:11.526415 - lb01 - #2222 Metrics processed in 0.179049015045
2016-05-12 12:57:26.471943 - lb01 - #2222 Metrics processed in 0.209563970566
2016-05-12 12:57:57.489603 - lb01 - #31383 Metrics processed in 2.79893708229
2016-05-12 12:58:17.208466 - lb01 - #31383 Metrics processed in 2.70802783966
2016-05-12 12:58:30.733715 - lb01 - #2222 Metrics processed in 0.22886300087
2016-05-12 12:58:45.601631 - lb01 - #2222 Metrics processed in 0.184427976608
2016-05-12 12:59:15.377633 - lb01 - #31383 Metrics processed in 2.51854896545
2016-05-12 12:59:28.962007 - lb01 - #2222 Metrics processed in 0.179329872131

Advantages

• Dynamic discovery for new pools

• Easy metric correla6on between network, servers or applica6ons

• Anomaly (outliers) detec6on algorithms

• Derisive CPU consump6on compared to SNMP

.

QUESTIONS?
Special thanks for contributors here
- Cassiano Aquino (caquino@zendesk.com)
- Stephen O'Neill (soneill@zendesk.com)

