MONITORING MASSIVE
NETWORK METRICS

Vicente De Luca

Sr. Network Engineer at Zendesk
vdeluca@zendesk.com
https:/nethero.org

Problem we are trying to solve

Poll all load balancers metrics every 1min including:
- Memory utilization breakdown by linux processes
- Backend pool statistics including breakdown per members

Metric volume:

- 3k pool objects per load balancer

- each pool object contain multiple metrics (28)

- also nested member metrics (25 x N) N = amount of nodes
- total ~562k metrics per polling, per active load balancer

1st shot

Not reinvent the wheel by trying SNMP polling:
e Not all metrics available in factory MIBs (Ex. memory breakdown)
e Static creating custom MIBs don't scale (we tried)

e Hit awallin CPU resources used by net-snmp (daemon crashes)

Feb 12 11:20:13 1lb0O1l emerg logger: Re-starting snmpd
Feb 12 11:21:14 1lbO1l emerg logger: Re-starting snmpd

Vendor support provides no viable alternative for this scenario

Discovering alternatives

We realized we could:
- Get all the stats by CLI show cmds without harming CPU
- Cook a parser for extracting names,tags and values

- Use Datadog for our time series DB, dashboard panel and alerts
system

How our data looks like ?

Ltm pool POOL-INOG {

active-member-cnt 2

conng-all.
conng-all.
conng-all.
conng-all.
conng-all.

age-edm ©
age-ema @
age-head ©
age-max ©
depth 0

conng-all.serviced @

conng.age-edm 0

conng.age-ema ©

conng.age-head 9

conng.age-max ©

conng.depth 0

conng.serviced 9

cur-sessions 605

members {

serverl.inog.net:80 {

addr 10.0.0.2
serverside.bits-in 1289371
serverside.bits-out 31293
serverside.cur-conns 302
serverside.max-conns 1000
serverside.pkts-in 31920
serverside.pkts-out 31289
serverside.tot-conns 800
session-status enabled
status.availability-state available
status.enabled-state enabled
status.status-reason Pool member is available
tot-requests 132913

Why Datadog ?

 Wide utilized by dev/ops allowing easy correlation graphs
e |ncrease audience on network metrics

 No infra concerns on scaling up the amount of pushed metrics

Do | need to pay for Datadog ?

No. Similar approach should work with statsd and compatible
backends suchs as InfluxDB

How (dog)statsd works?

e |ocal agent (dogstatsd) listen to UDP messages

e expect metrics in the following format:

metric.name:value|type|@sample rate|#tagl:value,tag’Z

And now, what ?

We cooked a script (python) to:

- parse the load balancer CLI show output

- extract metric name, tags and values

- craft and send an UDP packet to dogstatsd for each metric

UDP payload example:

netops. lb.serverside.cur _conn:143321|g|#pod:1,#netdevice: 1lbll,#vip:inog,#port:80,#view:public

Challenges while writing the parser (python) script

balancing curly brackets its not an easy job
lucky day: our load balancer output looks like JSON
forced show output to be JSON by regex replace

result is a python dictionary where for loops can extract name,
tags and values

2nd shot

At pair of active/standby load balancers:

- bash script execute show cmd every 1 minute, compress the
result and send to a linux host via netcat

At linux host:

- nc receives the data, uncompress and call a python script
- python script parse the metrics, extract tags and values
- craft and submit UDP datagrams to local dogstatsd process

id Balancers VIP breakdown =& Show| '1h The Past Hour Rk n

Results: Metric Loss: overloading dogstatsa

0.96K
OK

|
09:15

| ‘ | T ' l | ' | : | |
09:20 09:25 09:30 09:35 09:40 09:45 0 e N0 09:55 10:00

Avg: 0.97K zendesk.netops.lb.serverside.cur_conns { ,port:http,vip:proxy}

Avg: 44.69K zendesk.netops.lb.serverside.cur_conns { ,port:https,vip:proxy}

10:05

3rd shot (+Improvements)

At pair of active/standby load balancers:
- bash script now cheks if unit is active before submit metrics via
netcat (reduced by half workload on dogstatsd)

At linux host:

- Filter any non need metrics (all permanent zeroed values)

- Splay: Python send the UDP packets in large blocks, sleeping a
few before submiting next block

Results

How our data looks now ?

0K

Current Connections / Top Talkers (every 1 min)

Current Connections s L
Q-i — N T ——
https,view:external,vip: s
12:1 12:30 12:45 13:00
Current Connections & &

12:15

12:30

12:45

13:00

K
- K
- K

K
oK
- K
oK
e

w K

2K
oK
g

oK
K
K

LK
K

JK

- TOP Talkers

- TOP Talkers

Events overlay (Network Changes)

= : ™ Current Connections s &
K — 2
IK%
K
K

———— T — . - e S R e —— e ————]

18:00 Thu 12 06:00 12:00

Members flap

“w = - Members flap - Last 1h

5.83 W NEEESREETN S =3%
0 B EEEEaES B 0%
50 0%
5 0%
4 0%
4 | e 0%
0 0%
4 0%
4 NEE— 0%
24 0%
2 A 0%
4 0%

Infrastructure correlation

LB TCP Segments Retransmits / second
4

3

2

1
l’:

L «J,‘A,,‘!.‘.h;;.M G

10:00 11:00 12:00

Proxy TCP Segments Retransmits / second

2

,.“H A AN

10:00 10:42:00 WEO 12:00

l

s B

PN ;'41.\ M’

13:00

s B

13:00

LB TMM - Memory Used = o &
5G
A P — W
2G
1G
0G i I ; I i I i I
10:00 11:00 12:00 13:00
Proxy Load Average XOAE &S B
50
40
30
20
10 ‘
Il ST A L RS s N e
0 Nt s vy e VPN T TS il

Results

Alerting

N—

Datadog Alerting 5/11/:
Vicente De Luca vdeluca@zendesk.com

£-DATADOG

d on g g | TCP Retransmission rate is over threshold ws pmsss

e Email

e Page on call

e all usual means
Triggered by:
e Configured Thresholds

ansmission rate is over threshold = s

e Outlier detection algorithms SN B S S SN RSN B0 EEESs EEE R e @

.5K M\d
last 5Sm avg: 0.48K ¥

Python script execution output

2016-05-12 12:56:58.231643 - 1bOl - #31383 Metrics processed in 2.79145097733
2016-05-12 12:57:11.526415 - 1bO1 - #2222 Metrics processed in 0.179049015045
2016-05-12 12:57:26.471943 - 1bO1l - #2222 Metrics processed in 0.20956397/0566
2016-05-12 12:57:57.489603 - 1bO1l - #31383 Metrics processed in 2.79893708229
2016-05-12 12:58:17.208466 - 1bO1l - #31383 Metrics processed in 2.708027/83966
2016-05-12 12:58:30.733715 - b0l - #2222 Metrics processed in 0.22886300087

2016-05-12 12:58:45.601631 - 1bOl1l - #2222 Metrics processed in 0.184427976608
2016-05-12 12:59:15.377633 - 1bO1l - #31383 Metrics processed in 2.51854896545
2016-05-12 12:59:28.962007 - b0l - #2222 Metrics processed in 0.179329872131

Advantages

Dynamic discovery for new pools
Easy metric correlation between network, servers or applications
Anomaly (outliers) detection algorithms

Derisive CPU consumption compared to SNMP

QUESTIONS?

Special thanks for contributors here
- Cassiano Aquino (caguino@zendesk.com)
- Stephen O'Neill (soneill@zendesk.com)

